Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
Adv Healthc Mater ; : e2202921, 2023 May 08.
Article Dans Anglais | MEDLINE | ID: covidwho-2313602

Résumé

The delivery of nucleic acid vaccine to stimulate host immune responses against Coronavirus disease 2019 shows promise. However, nucleic acid vaccines have drawbacks, including rapid clearance and poor cellular uptake, that limit their therapeutic potential. Microrobots can be engineered to sustain vaccine release and further control the interactions with immune cells that are vital for robust vaccination. Here, the 3D fabrication of biocompatible and biodegradable microrobots via the two-photon polymerization of gelatin methacryloyl (GelMA) and their proof-of-concept application for DNA vaccine delivery is reported. Programmed degradation and drug release by varying the local exposure dose in 3D laser lithography and further functionalized the GelMA microspheres with polyethyleneimine for DNA vaccine delivery to dendritic cell and primary cells is demonstrated. In mice, the DNA vaccine delivered by functionalized microspheres elicited fast, enhanced, and durable antigen expression, which may lead to prolonged protection. Furthermore, we demonstrated the maneuverability of microrobots by fabricating GelMA microspheres on magnetic skeletons. In conclusion, GelMA microrobots may provide an efficient vaccination strategy by controlling the expression duration of DNA vaccines.

2.
Front Cell Neurosci ; 16: 1108593, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2199041

Résumé

[This corrects the article DOI: 10.3389/fncel.2022.954912.].

3.
Cell Rep Phys Sci ; 3(10): 101061, 2022 Oct 19.
Article Dans Anglais | MEDLINE | ID: covidwho-2042210

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can persist in wastewater for several days, has a risk of waterborne-human transmission. The emergence of SARS-CoV-2 variants with increased infection capacity further highlights the need to remove the virus and restrict its spread in wastewater. Here, we report a decoy microrobot created by camouflaging algae with cell membranes displaying angiotensin-converting enzyme 2 (ACE2) for effective elimination of SARS-CoV-2 and its variants. The decoy microrobots show fast self-propulsion (>85 µm/s), allowing for successful "on-the-fly" elimination of SARS-CoV-2 spike proteins and pseudovirus in wastewater. Moreover, relying on the robust binding between ACE2 and SARS-CoV-2 variants, the decoy microrobots exhibit a broad-spectrum elimination of virus with a high efficiency of 95% for the wild-type strain, 92% for the Delta variant, and 93% for the Omicron variant, respectively. Our work presents a simple and safe decoy microrobot aimed toward eliminating viruses and other environmental hazards from wastewater.

4.
Appl Mater Today ; 26: 101337, 2022 Mar.
Article Dans Anglais | MEDLINE | ID: covidwho-1611595

Résumé

Mobile self-propelled micro/nanorobots are mobile binding surface that improved the sensitivity of many biosensing system by "on-the-fly" identification and isolation of different biotargets. Proteins are powerful tools to predict infectious disease progression such as COVID-19. The main methodology used to COVID-19 detection is based on ELISA test by antibodies detection assays targeting SARS-CoV-2 virus spike protein and nucleocapside protein that represent an indirect SARS-CoV-2 detection with low sentitivy and specificity. Moreover ELISA test are limited to used external shaker to obtain homogenously immobilization of antibodies and protein on sensing platform. Here, we present magnetic microrobots that collective self-assembly through immuno-sandwich assay and they can be used as mobile platform to detect on-the-fly SARS-CoV-2 virus particle by its spike protein. The collective self-assembly of magnetic microrobots through immuno-sandwich assay enhanced its analytical performance in terms of sensitivity decreasing the detection limit of SARS-CoV-2 virus by one order of magnitude with respect to the devices previously reported. This proof-of-concept of microrobotics offer new ways to the detection of viruses and proteins of medical interest in general.

SÉLECTION CITATIONS
Détails de la recherche